

UNIVERSITÉ PARIS-EST CRÉTE VAL DE MARNE

Elaboration et caractérisation d'hétérostructures graphène – polymères – nanoparticules métalliques pour la capture de gaz

<u>M. DIENG¹</u>, B. CARBONNIER¹, S. MAHOUCHE-SERGUI¹, D. GRANDE¹

¹ Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France

*Auteur correspondant : <u>mbaye.dieng@cnrs.fr</u>

49^{èmes} Journées d'Etudes des Polymères (JEPOs 2022)

Du 2 au 7 octobre 2022 À Bussang (Vosges)

Plan de la Présentation

Contexte & objectifs

✤ Augmentation croissante de la quantité de CO₂ dans l'atmosphère

* Des investissements croissants pour limiter la quantité de gaz à effet de serre

Techniques de capture de CO₂

Développement de nouveaux matériaux nanocomposites faciles à mettre en évidence capables de capturer sélectivement le dioxyde de carbone.

Contexte & objectifs

□ Nanocomposites ternaires pour la capture du CO₂

- o Graphéne-polyéthyléneimine-nanoparticules métalliques
- Graphène

- Surface spécifique élevée =2600 m².g⁻¹
- Excellentes propriétés mécaniques = module Young 1 TPa.

Lee et *al*. SCIENCE. Jul 2008; Vol 321:385-388. Wang et *al*. Nat Chem. août 2010;2(8):661-5.

Polyéthyléneimine (PEI)

- Densité élevée de fonctions amine
- Complexation des nanoparticules métalliques
- Affinité vis-à-vis du CO₂

- Nanoparticules métalliques
 - Amélioration de la surface spécifique
 - Affinité vis-à-vis du CO₂

GFP – section EST

Slide 4/15

Présentateur : Mbaye DIENG

02-07 octobre 2022

Synthèse & Caractérisations

Synthèse de nanocomposites binaires: G(x%)-PEI

Protocole

Graphène et G-PEI en suspension dans l'eau après 1 heure sans agitation

Spectroscopie Raman

 Apparitions des bandes D (1331 cm⁻¹), G (1558 cm⁻¹) et 2D (2684 cm⁻¹) caractéristiques du graphène, confirmant la présence du graphène dans les nanocomposites synthétisés.

- Graphene : multicouches et présence de défauts sur sa structure cristalline
- L'ajout de la PEI n'a pas d'effet sur la structure cristalline

Diffraction des Rayons X

- Présence des pics caractéristiques du graphène : (002) à 26,45° et (101) à 43,5°
- d=0,34 nm =cte, donc l'ajout du PEI ne modifie pas la structure cristalline du graphène.
- Cette interaction est due interaction du types liaisons hydrogène entre les NH₂ du PEI et les OH_{ext} du graphène.

✤ Pas de déplacement du pic (2θ = 26,45°) du graphène dans les composites G(x%)-PEI.

Pas d'intercalation de la PEI entre les feuillets du graphène

Présentateur : Mbaye DIENG

□ Analyse thermogravimétrique

* PEI

362 °C : Décomposition des fonctions amine

609 °C : Décomposition des ramifications

Graphène

683 °C: Décomposition des liaisons carbone sp²

✓ Le graphène améliore la stabilité thermique du nanocomposite G-PEI

GFP – section EST	Slide 8/15	Présentateur : Mbaye DIENG	02-07 octobre 2022	JEPO2022
-------------------	------------	----------------------------	--------------------	----------

□ Spectrométrie photoélectronique X

- Apparition du pic de l'azote à 400 eV
- Spectre C1s montre la présence de trois pics à 285.21, 286.16, 286.75 et 287.8 eV correspondant à C-C, C-N, C-O et C=O, respectivement.
- Le spectre N1s montre trois pics à 399.9, 400,2 et 401.1 eV correspondant aux NH₂, NH₃⁺ et N-C=O.

Présentateur : Mbaye DIENG

02-07 octobre 2022

Synthèse de nanocomposites ternaires

✤ G(25%)-PEI-AgNPs et G(25%)-PEI-AuNPs

Diffraction des Rayons X

- Le pic à $2\theta = 38,48^{\circ}$ correspond au Ag (111) des AgNPs.
- Le pic à 2θ = 38,48° correspond au Au (111) indiquant la structure cristalline de Au réduit.
- On détecte, en plus du pic de graphène à 26,61°, la présence d'autres pics liés aux atomes d'Ag et Au.

Analyse thermogravimétrique

- Pourcentage massique de métal dans le matériau :
 - ➤ 15% AgNPs
 - ➢ 5% AuNPs

□ Spectroscopie photoélectronique aux rayons X

Adsorption de CO₂

Conditions expérimentales

- Phase de stabilisation : 200 °C ٠
- Pression = 1 bar•
- Température d'adsorption = 80 °C ٠
- Température de désorption = 150 °C ٠

Nanocomposites	CO ₂ ads	CO ₂ ads	CO ₂ ads
	mmol/g	mmol/g	mmol/g
		(G)	(PEI)
Graphene	0,52	-	-
G(10%)-PEI	0,5	0,41	0,09
G(5%)-PEI	0,48	0,38	0,1
G(10%)-PEI-AgNPs	0,5	-	-

GFP – section EST

Slide 13/15

Présentateur : Mbaye

DIENG

02-07 octobre 2022

JEPO2022

Conclusions

- ✓ Spectroscopie Raman, DRX, ATG et XPS ont confirmé la synthèse des nanocomposites G(x%)-PEI
- ✓ DRX montre qu'il n'y a pas d'intercalation entre la PEI et le graphène
- Immobilisation des NMPs confirmée par la présence des pics Ag et Au réduits sur les spectres DRX et XPS
- ✓ ATG montre une meilleure immobilisation des NMPs d'Ag (15%) que les celles d'Au (5%)
- ✓ PEI contribue à l'amélioration de l'adsorption du CO₂

Perspectives

- Optimisation des conditions d'exfoliations du graphène
- Pression, température de désorption
- Forme, taille et concentration des NMPs
- Valorisation du CO₂

Merci pour votre attention !

Mbaye DIENG mbaye.dieng@cnrs.fr

GFP – section EST

Slide 15/15

Présentateur : Mbaye DIE

baye DIENG

02-07 octobre 2022

JEPO2022