

Detection of ammonia and formaldehyde gas by sensors based on electrodeposited polyaniline conductive films

Aihemaiti KAYISHAER, Institut UTINAM UMR CNRS 6213, Université de Franche-Comté IMT Ecole des Mines-Télécom DOUAI

> JEPO 2022, 49èmes Journées d'Etude des Polymères Bussang, 3 Octobre 2022

General context

Examples of existing CH₂O sensors

	low cost	good selectivity	low detection limit
	×		
Formiciderreter 41/			
	×		
	×		
	×		×
e constante de la constante de			×
	×		
			3

1st Step of my PhD thesis (Detection of NH₃)

low cost	good selectivity	low detection limit

2nd Step of my PhD thesis (Detection of CH₂O)

low cost	good selectivity	low detection limit

How does it work?

IEEE SENSORS JOURNAL, VOL. 12, NO. 5, MAY 2012

Synthesis of PANI by electrochemistry

- 1. Oxidation of aniline
- 2. Formation of the radical cation then coupling
- 3. Polymerization of PANI
- 4. Doping of the PANI film

(m; n) = (0; 1) Leucoemeraldine (L) (m; n) = (0,5; 0,5) Emeraldine (E) (m; n) = (1; 0) Pernigraniline (P)

Methods of characterization

Results Acids Surfactants $\dot{N}H_2$ HCI \mathbb{Q} H_2SO_4 `O⁻Na+ Sodium dodecyl sulfate (SDS) CH_3 H₃C Cetyltrimethylammonium bromide Aniline Ο (ANI) SO₃H Camphorsulfonic acid (CSA) (CTAB) R^1 Copolymer Na⁺ `O⁻ Triton X100 R^2 Jn $R^1 + R^2 = C_{11}H_{24}$ Sodium dodecylbenzenesulfonate (DBSA) .OH SO₃ w+x+y+z=20 CI Tween 20 Polystyrene sulfonate ЪЮ (PSS) ĊI Dichloroacetic acid (DCA)

Results Pt ANI+H₂SO₄ ANI+H₂SO₄+CTAB ANI+H₂SO₄+TritonX100 CV Activity 8e+04 CA ANI/ H₂SO₄ / TritonX100 ANI 0.4M H_2SO_4 0.6M ANI 0.4M H_2SO_4 0.6M CTAB 10⁻²M ANI 0.4M H_2SO_4 0.6M TritonX100 10⁻²M 7e+04 ANI/ H₂SO₄ 6e+04 (TW) 4e+04 3e+04 ANI/ H₂SO₄/ CTAB 2e+04 1e+04 0 _寸 Ó 150 **t(s)** 50 100 зоо 200 250

Results

	ANI+H ₂ SO ₄	ANI+H ₂ SO ₄ +CTAB	ANI+H ₂ SO ₄ +TritonX100
Thickness/Roughness	31282nm/980nm	41700nm/1272nm	45337nm/1200nm
FTO/Gold			
SEM X2000	DURY SAIR BESARS BS: Red S WO III. Sources	The care deside of the formation of the second seco	

Results

Resistance measure

Chamber of exposure

Results

Conclusion

Electrochemistry on FTO and Pt for optimization

Tests carried out with:

- many inorganic and organic acids
- anionic, cationic and neutral surfactants
- Copolymerization with a polyelectrolyte

Polymerization on gold sensors

Monitoring of resistance as a function of time with the various electrosynthesized polymers

Qualification of sensors for NH₃

PANI/H₂SO₄ can respond to NH₃ but it can't do total desorption of ammonia and it is sensitive to humidity

In progress:

PANI/H₂SO₄/ TPU

It is necessary to increase the hydrophobicity of PANI/H $_2$ SO $_4$ by incorporating polyurethane

Upcoming test

- Qualification of sensors for NH₃ : PANI/ Acids (thinner films)
- Use the best ammonia sensor and incorporate with fluoral-p for formaldehyde detection

